In this tutorial, we will explore the characterisitcs of projects on Kickstarter and try to understand what separates the winners from the projects that failed to reach their funding goals.

Qs for Exploratory Analysis:

We will start our analysis with the aim of answering the following questions:

    1. How many projects were successful on Kickstarter, by year and category.
    2. Which sub-categories raised the most amount of money?
    3. Projects originate from which countries?
    4. How many projects exceeded their funding goal by 50% or more?
    5. Did any projects reach $100,000 or more? $1,000,000 or higher?
    6. What was the average amount contributed by each backer, and how does this change over time? Does this amount differ with categories?
    7. What is the average funding period?


Predicting success rates:
Using the answers from the above questions, we will try to create a model that can predict which projects are most likely to be successful.

The dataset is available on Kaggle, and you can run this script LIVE using this kernel link. If you find this tutorial useful or interesting, then please do upvote the kernel ! 🙂

Step1 – Data Pre-processing

a) Let us take a look at the input dataset :

The projects are divided into main and sub-categories. The pledged amount “usd_pledged” has an equivalent value converted to USD, called “usd_pledged_real”. However, the goal amount does not have this conversion. So for now, we will use the amounts as is.

We can see how many people are backing each individual project using the column, “backers”.

b) Now let us look at the first 5 records:

The name doesn’t really indicate any specific pattern although it might be interesting to see if longer names have better success rates. Not pursuing that angle at this time, though.

c) Looking for missing values:

Hurrah, a really clean dataset, even after searching for “empty” strings. 🙂

 d) Date Formatting and splitting:

We have two dates in our dataset – “launch date” and “deadline date”.We convert them from strings to date format.
We also split these dates into the respective year and month columns, so that we can plot variations over time.
So we will now have 4 new columns: launch_year, launch_month, deadline_year and deadline_month.

Exploratory analysis:

a) How many projects are successful?

We see that “failed” and “successful” are the two main categories, comprising ~88% of our dataset.
Sadly we do not know why some projects are marked “undefined” or “canceled”.
“live”” projects are those where the deadlines have not yet passed, although a few among them are already achieved their goal.
Surprisingly, some ‘canceled’ projects had also met their goals (pledged_amount >= goal).
Since these other categories are a very small portion of the dataset, we will subset and only consider records with satus “failed” or “successful” for the rest of the analysis.

b) How many countries have projects on kickstarter?

We see projects are overwhelmingly US. Some country names have the tag N,0“”, so marking them as unknown.

c) Number of projects launched per year:

Looks like some records say dates like 1970, which does not look right. So we discard any records with a launch / deadline year before 2009.
Plotting the counts per year on a graphs: < br />From the graph below, it looks like the count of projects peaked in 2015, then went down. However, this should NOT be taken as an indicator of success rates.



Drilling down a bit more to see count of projects by main_category.

Over the years, maximum number of projects have been in the categories:

    1. Film & Video
    2. Music
    3. Publishing

 d) Number of projects by sub-category: (Top 20 only)

The Top 5 sub-categories are:

    1. Product Design
    2. Documentary
    3. Music
    4. Tabletop Games (interesting!!!)
    5. Shorts (really?! )

Let us now see “Status” of projects for these Top 5 sub_categories:
From the graph below, we see that for category “shorts” and “tabletop games” there are more successfull projects than failed ones.

 e) Backers by category and sub-category:

Since there are a lot of sub-categories, let us explore the sub-categories under the main theme “Design” 

Product design is not just the sub-category with the highest count of projects, but also the category with the highest success ratio.

 f) add flag to see how many got funded more than the goal.

So ~40% of projects reached or surpassed their goal, which matches the number of successful projects .

 g) Calculate average contribution per backer:

From the mean, median and max values we quickly see that the median amount contributed by each backer is only ~$40 whereas the mean is higher due to the extreme positive values. The max amount by a single backer is ~$5000.

h) Calculate reach_ratio

The amount per backer is a good start, but what if the goal amount itself is only $1000? Then an average contribution per backer of $50 impies we only need 20 backers.
So to better understand the probability of a project’s success, we create a derived metric called “reach_ratio”.
This takes the average user contribution and compares it against the goal fund amount.

We see the median reach_ratio is <1%. Only in the third quartile do we even touch 2%!
Clearly most projects have a very low reach ratio. We could subset for “successful” projects only and check if the reach_ratio is higher.

 i) Number of days to achieve goal:

 Predictive Analystics:

We will apply a very simple decision tree algorithm to our dataset.
Since we do not have a separate “test” set, we will split the input dataframe into 2 parts (70/30 split).
We will use the smaller set to test the accuracy of out algorithm.

Taking a peek at the decision tree rules:

kickstarter success decision tree

kickstarter success decision tree

Thus we see that “backers” and “reach-ratio” are the main significant variables.

Re-applying the tree rules to the training set itself, we can validate our model:

From the above tables, we see that the error rate = ~3% and area under curve >= 97%

Finally applying the tree rules to the test set, we get the following stats:

From the above tables, we see that still the error rate = ~3% and area under curve >= 97%



Thus in this tutorial, we explored the factors that contribtue to a project’s success. Main theme and sub-category were important, but the number of backers and “reach_ratio” were found to be most critical.
If a founder wanted to gauge their probability of success, they could measure their “reach-ratio” halfway to the deadline, or perhaps when 25% of the timeline is complete. If the numbers are lower, it means they need to double down and use promotions/social media marketing to get more backers and funding.

If you liked this tutorial, feel free to fork the script. And dont forget to upvote the kernel! 🙂